ICPC Asia Seoul Regional Contest 2025

Solutions Presentation

November 22, 2025

M: Triple Fairness

Proposer: Nah Jeounghui, Setter: Youn Gyojun

Problem: Given n **not divisible** by 3, find **any** Fair Problemset sequence of length 3n.

Solution: Print 1 to n in order 3 times.

Complexity: $\mathcal{O}\left(n\right)$.

L: Segments

Proposer: Koo Jaehyun, Setter: Sim Jeong Seop

Problem: Given n horizontal segments, find the **maximum extension** required for all segments to reach a vertical query line x = p for each of q queries.

Constraints: $n, q \le 2 \times 10^6$

Solution:

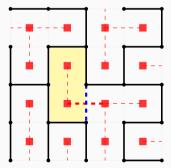
- y-coordinates are redundant.
- Answer is determined by
 - the **maximum of left** endpoints $=: x_l$, and
 - the **minimum of right** endpoints $=: x_r$.
- Answer = $\max (x_l p, p x_r, 0)$.

Pitfalls:

• Remember to apply $\max(0, \cdot)$.

Complexity: O(n+q).

C: Bay


Proposer: Cho Hwan-Gue, Setter: Cho Hwan-Gue

Problem: Given a spanning tree of a grid graph, find all the non-tree edges that create cycles (bays) of area S.

Solution:

• Treat grid cells as vertices to form a rooted forest.

Proposer: Cho Hwan-Gue, Setter: Cho Hwan-Gue

Solution:

- Set the vertices connected to the exterior of the grid as roots.
- Use DFS to count subtrees of size S.

Pitfalls:

- You should count subtrees, not cut edges.
- Cells form a grid of $(n-1) \times (n-1)$.
- You cannot apply Pick's theorem; the number of interior lattice points may not be zero.

Complexity: $\mathcal{O}\left(n^2\right)$.

Problem: Given $n \times m$ board, simulate a complex Match-3 game with bombs, gravity, and chain reactions. Count removed gems.

Solution:

- Implement rules exactly (Match-3 o Gravity o Bombs).
- Handle simultaneous removals carefully.
- · Continue processing even if bombs are active but no matches exist.

Pro-tips:

• Strict linear-time optimization for every step is **not** required; the total time complexity is naturally bounded by $\mathcal{O}\left(\left(nm\right)^2\right)$.

Complexity: $\mathcal{O}\left((nm)^2\right)$.

G: Extraterrestrial Creatures

Proposer: Kim Yeonghyeon, Setter: Kim Yeonghyeon

Problem: Simulate X button presses where the smallest value increases. Find final values.

Constraints: $n < 5 \times 10^5$; $X < 10^{12}$

Solution: • Let f(t) be presses needed for all numbers to reach $\geq t$.

$$f(t) = \sum_{i} \left\lceil \frac{\max(A_i - t, 0)}{J_i} \right\rceil$$

- f is monotonely increasing; **binary search** for t such that $f(t) \le X < f(t+1)$.
- Simulate the remaining (X-f(t)) presses on the smallest IDs.

Complexity: $O(n \log(nX))$.

E: Clean Arrangements

Proposer: Shin Chan-Su, Setter: Shin Chan-Su

Problem: Find a linear arrangement of a rooted tree to **minimize total edge length**, such that no edge covers the root (clean).

Solution:

- Define D_v as the minimum of "subtree T_v cost plus overlap cost".
- Sort child subtrees by size (descending).
- Place subtrees alternately to the left and right of v.

Pitfalls:

ullet The case where v is the root should be handled slightly differently.

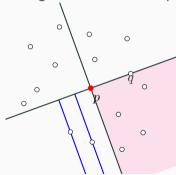
Complexity: $\mathcal{O}(n)$.

K: Quadrants

Proposer: Bae Sang Won, Setter: Bae Sang Won

Problem: Given n points, count the number of k-quadrants (quadrants containing

exactly k points) for all k.


Constraints: $n \le 2000$

K: Quadrants

Proposer: Bae Sang Won, Setter: Bae Sang Won

Solution:

- Fix a point p, and rotate perpendicular axes.
- The figure below shows k-quadrants with $k \in [4, 6)$.

Complexity: $O(n^2 \log n)$.

D: Bookshelf

Proposer: Kim Jae-Hoon, Setter: Kim Jae-Hoon

Problem: Can a favorite book be moved to a target position given specific rules about moving books into empty intervals?

Constraints: $n < 10^5$

Solution:

- Calculate free width $w := L \sum A_i$.
- Books with width $\leq w$ are free to swap; those > w maintain relative order.
- Anchor the favorite book and test feasibility of placing large books to its left/right.

Pitfalls:

 You should separately handle whether the favorite book is large or not.

Complexity: $\mathcal{O}(n)$.

Problem: Min edits to make array y CP-equivalent to x.

Constraints: $n, m \leq 40$

Solution:

- CP-equivalent \equiv Maximum Cartesian trees are isomorphic.
- Build the Cartesian tree T of x.
- DP state $D_{[s,e],c,T_v}:=$ Minimum possible value at node v for subarray $y[s\cdots e]$ of y with $\leq c$ edits.
- Optimize the DP using monotonicity and two-pointer techniques.

Complexity: $\mathcal{O}\left(40^5/6\right)$

Problem: Given two sequences a and b, compute $f_i = \max(\cdots)$.

Constraints: $n \le 2.5 \times 10^5$

Solution:

- Define $I_i := [a_i, a_i + b_i]$.
- Computing $\max\left(\cdot\right)\equiv$ Greedily coloring interval graph $I_*.$
- Find smallest i such that $f_i = 0 \equiv$ Find smallest i such that $I_i \subseteq J$.
- Recursively find all $f_*=0$, remove these, and repeat for $f_*=1,2,\cdots$.

Pro-tips:

• k-d tree $(\mathcal{O}\left(n\sqrt{n}\right))$ instead of 2D segment tree $\left(\mathcal{O}\left(n\log^2 n\right)\right)$ also works.

Complexity: $\mathcal{O}(n \log^2 n)$.

A: Adventurer Dabi

Proposer: Youn Gyojun, Setter: Youn Gyojun

Problem: Interactive. Navigate an unknown grid to find a key, then reach the treasure in the minimum number of steps. Handle unknown teleports.

Solution:

- Move to an arbitrary cell adjacent to a wall.
- Discover all walls using the right-hand rule.
- Identify teleport cells and recover connectivity; Invertible moves allow backtracking.
- From the key cell, use BFS to find the shortest path to the treasure.

Pro-tips:

- The command limit is very loose; Wise and smart randomized strategies work.
- Use mock interactor and web visualizer wisely.

H: Fair Problemset

Proposer: Nah Jeounghui, Setter: Nah Jeounghui

Problem: Count Fair sequences of length 3n for every $n=1,2,\cdots,10^6$.

Solution:

- Let P_i be the i-th problem.
 - · Contiguous partitions:
 - $G_{1,*} := \{P_1, P_2, \cdots, P_n\}$
 - $G_{2,*} := \{P_{n+1}, P_{n+2}, \cdots, P_{2n}\}$
 - $G_{3,*} := \{P_{2n+1}, P_{2n+2}, \cdots, P_{3n}\}$
 - Jump partitions:
 - $G_{*,1} := \{P_1, P_4, P_7, \cdots, P_{3n-2}\}$
 - $G_{*,2} := \{P_2, P_5, P_8, \cdots, P_{3n-1}\}$
 - $G_{*,3} := \{P_3, P_6, P_9, \cdots, P_{3n}\}$
- Let $G_{i,j} := G_{i,*} \cap G_{*,j}$.
- Count sequences $\sigma_1, \sigma_2, \cdots, \sigma_n \in \Sigma_3$ so that place P_i at $G_{j,\sigma_i(j)}$.

H: Fair Problemset

Proposer: Nah Jeounghui, Setter: Nah Jeounghui

Solution:

- Observe that
 - Use $(1\,2\,3)$; (αx) times.
 - Use $(2\,1\,3)$, $(1\,3\,2)$, $(3\,1\,2)$; x times.
 - Use $(2\,3\,1)$, $(3\,1\,2)$; (βx) times.

, where
$$n = 3q + r; \alpha = q + \delta_{1,r}; \beta = q + \delta_{2,r}; 0 \le x \le q$$
.

· The answer is

$$A_n = (\alpha!)^3 (\beta!)^6 \sum_{i=0}^q \binom{n}{\alpha - i; i; i; i; \beta - i; \beta - i}^3$$

H: Fair Problemset

Proposer: Nah Jeounghui, Setter: Nah Jeounghui

Solution:

- To compute all A_* 's, you can
 - Make a generation function for A_{\ast} and use FFT,
 - Find recurrence relation of $B_q := \sum_{i=0}^q \binom{q}{i}^3$ and use B_* 's, or
 - Compute A_* for $n \le 200$ naïvely and find p-recursive relation of order ≤ 20 .

Complexity: $\mathcal{O}(10^6)$.

Problem: Calculate the minimum time for selected among n employees to cross a bridge with a single badge (capacity 2). Process q range queries.

Solution:

- Greedy strategy is optimal: Use 1 or 2 fastest to shuttle.
- For $n \geq 3$ people with times $t_1 \leq t_2 \leq \cdots \leq t_n$, the answer is

$$(n-k-2)t_1 + (2k+1)t_2 + \sum_{i=3}^{n-2k} t_i + \sum_{i=0}^{k-1} t_{n-2i}$$

, where
$$m := \max\{j : t_j \le 2t_2 - t_1\}$$
 and $k := \lfloor (n - m)/2 \rfloor$.

- Apply Mo's algorithm to the queries.
- Maintain a segment tree to sum odd-ranked values (1st, 3rd, ···)
 efficiently.

Complexity: $O(q\sqrt{n}\log n)$.

Thanks to:

Problem proposers & setters & reviewers:

- · Cho Hwan-Gue
- Kim Soohwan
- Kim Jae-Hoon
- Bae Sang Won
- Shin Chan-Su
- Sim Jeong Seop
- Han Yo-Sub

- Koo Jaehyun
- Kim Yeonghyeon
- Kim Jaehong
- Nah Jeounghui
- Youn Gyojun
- Lee Seung Yong

System operators:

- Hong Seokju
- Park Suhyun
- Shin Seungwon