
icpc International Collegiate 
Programming Contest

The 2024 ICPC

Asia Seoul Regional Contest

Problem Set

Asia Seoul

icpc global sponsor

programming tools

icpc diamond

multi-regional sponsor

ICPC 2024 Asia Regional – Seoul

Problem Set

Please check that you have 12 problems that are spanned across 26 pages in total (including two
cover pages).

A. Bottles (2 pages)

B. Card Flipping (2 pages)

C. Colorful Quadrants (2 pages)

D. Ladder Update (4 pages)

E. Mausoleum (2 pages)

F. Pair Sorting (2 pages)

G. Palindromic Length (1 page)

H. Protecting Kingdom (2 pages)

I. Square Stamping (1 page)

J. Street Development (2 pages)

K. String Rank (2 pages)

L. Triangle (2 pages)

ICPC 2024 Asia Regional – Seoul Problem A: Bottles

Problem A
Bottles

Time Limit: 1.0 Seconds

In the famous ICPC race,  runners will participate. The course is  kilometers long and for safety, it is
divided into  ranges. Each range is one kilometer long and Range  (1 ≤  ≤ ) is the interval ( − 1, ),
which is the section between  − 1 km and  km from the starting point. We will ignore the case where the
distance between the starting point and a runner is an integer. As the weather is quite hot, the organizers
would like to put enough water. They will maintain a certain number of water bottles in each range. When a
runner takes one bottle, they will put another immediately. They have found that the optimal number of water
bottles could be obtained by calculating the maximum number of runners in that interval during the race.
Based on the previous records of each runner, they have estimated how many seconds he/she will spend in
each range.

Consider the following example. There are three runners, and the length of the course is six kilometers. The
table shows the amount of time runners will spend in each range (in seconds).

Runner Range 1 Range 2 Range 3 Range 4 Range 5 Range 6
1 350s 360s 370s 380s 390s 400s
2 240s 240s 240s 240s 240s 240s
3 480s 480s 520s 600s 600s 600s

Now we will check the number of runners in each range during the race. Intentionally, the table below is not
complete. When you fill the whole table and compute the maximum number of runners for each range, you
can see that you need to put three bottles of water in Range 1, two in Range 2 and Range 3, and one in Range
4, Range 5, and Range 6. Note that at 480s, Runner 2 leaves Range 2 and Runner 3 arrives at Range 2, both of
which will be ignored as their distance from the starting point is an integer. At 480s, no runner is in Range 1
and in Range 3 and Runner 1 is in Range 2. Then, for example, at 481s, Runner 1 and Runner 3 will be in
Range 2.

Time
elapsed

Range 1 Range 2 Range 3 Range 4 Range 5 Range 6

(0s, 240s) 3 0 0 0 0 0
(240s, 350s) 2 1 0 0 0 0
(350s, 480s) 1 2 0 0 0 0
(480s, 710s) 0 2 1 0 0 0
(710s, 720s) 0 1 2 0 0 0

… … … … … … …

Given the number of runners, the length of the course, and the amount of time each runner will spend in each
range, write a program to compute the number of bottles to be put in each range.

ICPC 2024 Asia Regional – Seoul Problem A: Bottles

Input
Your program is to read from standard input. The input starts with a line containing two integers,  and 
(1 ≤  ≤ 100, 1 ≤  ≤ 300), where  is the number of runners and  is the length of the course. In the
following  lines, the -th line contains  positive integers that represent the amount of time Runner  will
spend in each range. More precisely, the -th number on the line is the time Runner  will spend in Range .
No runner will spend more than 10,000 seconds in any range.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the numbers of
bottles in each range from Range 1 to Range .

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
3 6
350 360 370 380 390 400
240 240 240 240 240 240
480 480 520 600 600 600

3 2 2 1 1 1

Sample Input 2 Output for the Sample Input 2
4 5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

4 4 4 4 4

Sample Input 3 Output for the Sample Input 3
3 5
1 1 1 1 1
5 5 5 5 5
25 25 25 25 25

3 1 1 1 1

ICPC 2024 Asia Regional – Seoul Problem B: Cards Flipping

Problem B
Cards Flipping

Time Limit: 1.0 Seconds

The magician  has  cards in a row on a desk. Each card has two sides with colors. The top side of a card is
the side facing upwards. The bottom side of a card is the side facing downwards. Each side of a card has one
color. We want to find the maximum number of distinct colors on the top sides. In the following example, we
are given 5 cards in a row on a desk. The colors of the top sides of the cards are violet, red, violet, violet, and
red from the left to the right as shown in the following figure. The colors of the bottom sides of the cards are
red, violet, blue, yellow, and red from the left to the right.

If we flip a card, then the top side and the bottom side of the card are exchanged. If we flip the 3rd and the 4th
card from the left, then the colors of the cards on the top sides become like the following.

The number of distinct colors on the top sides becomes 4 which is the maximum for the example.

Given  cards placed in a row on a desk and the colors on the sides of cards, write a program to output the
maximum number of distinct colors on the top sides.

Input
Your program is to read from the standard input. The input starts with a line containing an integer  (1 ≤  ≤200,000), where  is the number of cards. The cards are numbered from 1 to . In the following two lines, the
first line contains the colors on the top sides of cards from the card 1 to the card . The second line contains the
colors on the bottom sides of cards from the card 1 to the card . Each color is represented by a nonnegative
integer, not exceeding 10.

ICPC 2024 Asia Regional – Seoul Problem B: Cards Flipping

Output
Your program is to write to the standard output. Print exactly one line. The line should contain the maximum
number of distinct colors on the top sides.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
5
0 1 0 0 1
1 0 2 3 1

4

Sample Input 2 Output for the Sample Input 2
2
3 5
5 1

2

Sample Input 3 Output for the Sample Input 3
3
0 1 0
1 0 2

3

ICPC 2024 Asia Regional – Seoul Problem C: Colorful Quadrants

Problem C
Colorful Quadrants

Time Limit: 1.0 Seconds

You are given an  ×  grid, and some of the grid points are colored by one of the  colors. The color of a
point is represented by an integer from 0 to , where 0 represents the uncolored case. Note that multiple
points may be colored the same. The rows and columns of the grid are denoted by integers from 1 to , and a
point located at row  and column  is denoted by (, ). For an uncolored point (, ) that satisfies 1 <  < 
and 1 <  < , we define four sub-grids by removing row  and column  from the grid. Each of the four sub-
grids is called NW (northwest), NE (northeast), SW (southwest), and SE (southeast) based on the position
relative to (, ). We say that (, ) has colorful quadrants if, when selecting one point from each of the four
sub-grids, the chosen four points are all of different colors.

See Figure C.1(a) as a 5 × 5 grid example. The point (2,3) has colorful quadrants because NW has color 1,
NE has color 4, SW has color 3, and SE has color 2, as shown in Figure C.1(b). However, the point (4,3)
does not have colorful quadrants because both SW and SE have color 2 only, as shown in Figure C.1(c).

 Figure C.1

Given an  ×  grid containing at least four grid points colored in different colors, write a program to count
the number of uncolored points that have colorful quadrants.

Input
Your program is to read from standard input. The input starts with a line containing two integers,  and 
(3 ≤  ≤ 2,000, 4 ≤  ≤ 1,000), where  is the number of rows and columns of the grid and  is the number
of colors. In the following  lines, the -th line contains  integers that represent the colors of the points (, )
for 1 ≤  ≤ . The integer  that represents the color of a point is in range 0 ≤  ≤ .

Output
Your program is to write to standard output. Print exactly one line. The line should contain the number of
uncolored points that have colorful quadrants.

ICPC 2024 Asia Regional – Seoul Problem C: Colorful Quadrants

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
5 4
0 1 0 0 4
2 0 0 1 3
3 0 2 0 0
0 0 0 0 0
0 2 1 2 0

1

Sample Input 2 Output for the Sample Input 2
3 4
1 2 3
4 1 2
3 4 1

0

Sample Input 3 Output for the Sample Input 3
4 8
0 1 2 0
8 0 0 3
7 0 0 4
0 6 5 0

0

ICPC 2024 Asia Regional – Seoul Problem D: Ladder Update

Problem D
Ladder Update

Time Limit: 1.0 Seconds

Ladder game is a popular game in Korea, as well as China and Japan. Wikipedia says that “It is known in
Korean as Sadaritagi (사다리타기, literally "ladder climbing"), in Japanese as Amidakuji (阿弥陀籤, "Amida
lottery"), and in Chinese as Guijiaotu (鬼腳圖, literally "ghost leg diagram").”

The diagram where the game is played consists of  vertical lines with horizontal line segments connecting
two adjacent vertical lines. The horizontal line segments are called legs. Each vertical line has a starting
(upper) point and an end (lower) point. The basic rule of this game is simple as follows:

· Start from the starting point of each vertical line and move downward along the vertical line. When
encountering a leg, move along the leg to the adjacent vertical line, and continue downwards until
reaching the end of a vertical line.

The vertical lines are numbered from 1 to  from left to right. It is well known that the game result is a
permutation of [1, 2, … , ]. For example, given a diagram with 4 vertical lines and 5 legs shown below, the
game result is [2, 3, 4, 1] from left to right.

However, some legs are redundant, meaning that the same result [2, 3, 4, 1] can be achieved with fewer legs;
as in the figure below, one can obtain the same result only with three legs excluding topmost and bottommost
ones. We want to determine the minimum number of horizontal line segments (legs) needed to achieve the
same result. Note that it is possible to draw new legs than the given ones if necessary.

ICPC 2024 Asia Regional – Seoul Problem D: Ladder Update

You are given  queries, where each query either adds a new leg or deletes an existing one. Write a program
to output the minimum number of legs required to achieve the same game result of the ladder structure
obtained after the query is processed. Note that each query is cumulative, meaning each subsequent query is
applied to the ladder structure resulting from previous queries.

Input
Your program is to read from standard input. The input starts with a line containing three integers , the
number of vertical lines, , the initial number of legs, and , the number of queries, separated by a space
where 2 ≤  ≤ 100,000, 1 ≤  ≤ 100,000, and 1 ≤  ≤ 100,000.

In the following  lines, each line contains two positive integers ℎ and , representing a leg at height ℎ
connecting the -th and ( + 1)-th vertical lines (1 ≤  ≤  − 1). The vertical lines are ordered from left to
right, and the height is numbered from top to bottom starting with 1. The height is no more than 10.

The next  lines contain the query information. Each query is either in the form of A ℎ  or D ℎ , where 1 ≤ℎ ≤ 10, 1 ≤  ≤  − 1.

· A ℎ : add a leg at height ℎ between the -th and ( + 1)-th vertical lines.
· D ℎ : delete the leg at height ℎ between the -th and ( + 1)-th vertical lines.

You can assume that there are no contradictory operations, that is, existing legs will not be added, and non-
existing legs will not be deleted. Also, you can assume that no two legs are positioned such that they share the
endpoint of the same height and the same vertical line.

Output
Your program is to write to standard output. The output consists of  lines and each line contains the
minimum number of legs required to achieve the same result for a query in the input order.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
4 4 3
3 1
2 2
5 2
6 3
A 7 1
A 4 3
D 3 1

3
6
3

Sample Input 2 Output for the Sample Input 2
4 5 5
3 1
2 2
5 2
6 3
7 1
D 6 3
D 7 1
D 5 2
D 3 1
D 2 2

2
3
2
1
0

ICPC 2024 Asia Regional – Seoul Problem D: Ladder Update

Explanation for Sample Input 1:

The sample input 1 gives the initial ladder structure below. The game result is [3, 2, 4, 1].

After applying the first query A 7 1 in the figure blow, the ladder structure is changed, then the game result
becomes [2, 3, 4, 1].

Among the five legs, only three legs (without topmost and bottommost legs) are enough to achieve the same
game result [2, 3, 4, 1] as shown in figure below, so the answer for the first query is 3.

ICPC 2024 Asia Regional – Seoul Problem D: Ladder Update

After processing the second query A 4 3, the ladder structure is changed as shown below. The number of legs
cannot be further reduced. The answer for the second query is 6.

After applying the third query D 3 1, the ladder structure is changed as shown below.

The ladder structure with three legs as shown below guarantees the same game result, so the answer for the
third query is 3.

ICPC 2024 Asia Regional – Seoul Problem E: Mausoleum

Problem E
Mausoleum

Time Limit: 0.3 Seconds

The Mausoleum of King Geo III is a huge stone structure in the shape of a histogram. A histogram is a simple
rectilinear polygon whose boundary consists of two chains: an upper chain that is monotone with respect to
the horizontal axis, and a lower chain that is a horizontal line segment, called the base segment (see Figure
E.1).

Figure E.1. A mausoleum and some paths between  and 

It is rumored that a hidden treasure lies somewhere within this mausoleum. Metry, a renowned treasure hunter,
has uncovered the treasure's location at point . Metry's plan is to break through the mausoleum's walls, enter,
and retrieve the treasure. She will start at a specific location  outside the mausoleum. Using her equipment,
Metry can drill through only one point, which corresponds to a vertex on the boundary of the mausoleum.
Since the time required to drill through the walls is the same at all vertices, the key to minimizing the time
spent is to find the shortest path from  to .

Figure E.1 illustrates a mausoleum along with several possible paths from  to , where the vertices are
pierced only once. The path through vertex  has a total length of 11.385165 = 6 + √29, the path through
vertex  has a length of 10.077687 = √20 + √13 + 2, and the path through vertex  has a length of 11.0 =2 + √25 + 4. Among these, the shortest path is through vertex .

Given the boundary of the mausoleum and the positions of  and , write a program to find the length of the
shortest path from  to  with a single vertex piercing.

Input
Your program is to read from standard input. The input starts with a line containing an integer,  (4 ≤  ≤100,000), where  is even and is the number of vertices of a histogram representing the mausoleum. In the
second line,  integers  ,  , …  ( =  = 0 , 0 ≤  ≤ 10) are given, which represent the -
coordinates of the vertical edges and the -coordinates of the horizontal edges. The vertical and horizontal
edges alternate as you traverse the upper chain of the histogram, from the left end to the right end of the base
segment. The length of each edge is at least 1, and the -coordinates are given in strictly increasing order. The
last line contains four integers , , , and  (−10 ≤  ,  ≤ 2 × 10, 0 <  ,  < 10), where (, )
and (, ) correspond to the points  and , respectively. Notice that  is a point outside the histogram and 
is a point inside the histogram, neither of which lies on the boundary.

ICPC 2024 Asia Regional – Seoul Problem E: Mausoleum

Output
Your program is to write to standard output. Print exactly one line. The line should contain exactly one real
value which is the length of the shortest path between  and . Your output  should be in the format that
consists of its integer part, a decimal point, and its fractional part, and will be decided to be “correct” if it
holds that  − 10 <  <  + 10, where  denotes the jury’s answer. The Euclidean distance between
two points  = (, ) and  = (, ) is ( − ) + ( − ).

The following shows sample input and output for three test cases. (Sample Input 1 corresponds to Figure E.1.)

Sample Input 1 Output for the Sample Input 1
12
0 5 2 8 5 3 7 6 11 4 13 0
11 8 3 3

10.077687

Sample Input 2 Output for the Sample Input 2
8
0 7 2 2 5 7 7 0
-2 4 6 4

11.767829

Sample Input 3 Output for the Sample Input 3
4
0 5 8 0
8 6 4 2

6.0

ICPC 2024 Asia Regional – Seoul Problem F: Pair Sorting

Problem F
Pair Sorting

Time Limit: 1.0 Seconds

There are  bins arranged in a row and 2 balls on the ground. The balls are numbered from 1 to  and there
are exactly two balls numbered , for each , 1 ≤  ≤ . Also, for 1 ≤  ≤ , the -th bin is denoted by  and
each bin  can contain at most two balls. Initially, the bin  contains both of ball  + 1 − ’s, for 1 ≤  ≤ .
See the Figure F.1 below for the initial configuration of bins.

Figure F.1. The initial configuration of bins

You can swap two balls only from adjacent bins, which implies one swap operation. Note the bin is not a
stack and for adjacent bins  and , you can swap the one of two balls in  and the one in . See the
Figure F.2 below. The figure represents two swap operations.

Figure F.2. The swap operations between adjacent bins

Through these swap operations, you should sort the balls. As a result of the sorting, the bin  must contain
the both of ball ’s, for 1 ≤  ≤ . In particular, the total number of swap operations should be no more than  , when  is given as a function of , especially,  = 0.7.

Given  bins and 2 balls, write a program to find a sorting method of balls such that the total number of
swap operations is no more than  = 0.7.

Input
Your program is to read from standard input. The input consists of exactly one line. The line contains an
integer  (3 ≤  ≤ 100), representing that there are  bins and 2 balls.

ICPC 2024 Asia Regional – Seoul Problem F: Pair Sorting

Output
Your program is to write to standard output. Let  be the total number of swap operations in your sorting
method for the input. Print exactly  + 1 lines. The first line contains . Each of the following  lines contains
three integers , , and , representing one swap operation between the ball  in the bin  and the ball  in , where 1 ≤  ≤  − 1 and 1 ≤ ,  ≤ . The swap operations in your sorting method should be printed
in order, one per line. The number  must satisfy that  ≤ 0.7.

The following shows sample input and output for two test cases.

Sample Input 1 Output for the Sample Input 1
3 6

1 3 2
2 3 1
1 2 1
1 3 2
2 3 1
1 2 1

Sample Input 2 Output for the Sample Input 2
3 5

1 3 2
2 3 1
1 3 1
2 3 1
1 2 1

ICPC 2024 Asia Regional – Seoul Problem G: Palindromic Length

Problem G
Palindromic Length

Time Limit: 0.5 Seconds

A string is called a palindrome if it is read the same forward and backward. Palindromes are useful factors for

measuring the complexity of strings like the asymmetry of the strings. The asymmetry of a string 𝑆 of length 𝑛

can be measured by its palindromic length, PL(𝑆), which is the minimum number of palindrome substrings

into which 𝑆 can be partitioned. More precisely, PL(𝑆) is the minimum number 𝑡 (1 ≤ 𝑡 ≤ 𝑛) such that there

exist palindrome substrings 𝑆1, 𝑆2, … , 𝑆𝑡 whose concatenation 𝑆1𝑆2 ⋯ 𝑆𝑡 becomes 𝑆 . To make it easier to

distinguish, we denote a partition of 𝑆 into 𝑆1 , 𝑆2, … , 𝑆𝑡 as 𝑆1 | 𝑆2 | ⋯ | 𝑆𝑡.

For example, a string 𝑆 = 𝑎𝑏𝑎𝑎𝑐𝑎 can be partitioned into two palindrome substrings as 𝑎𝑏𝑎 | 𝑎𝑐𝑎, that is the

minimum, so PL(𝑎𝑏𝑎𝑎𝑐𝑎) = 2. A string 𝑎𝑐𝑎𝑏𝑎 cannot be partitioned into two palindrome substrings, but it

can be partitioned into three palindrome substrings, 𝑆 = 𝑎𝑐𝑎 | 𝑏 | 𝑎 or 𝑆 = 𝑎 | 𝑐 | 𝑎𝑏𝑎, so PL(𝑎𝑐𝑎𝑏𝑎) = 3.

For 𝑆 = 𝑟𝑎𝑑𝑎𝑟, PL(𝑆) = 1 because 𝑆 is a palindrome. PL(𝑆) = 5 for 𝑆 = 𝑎𝑏𝑐𝑑𝑒.

Given a non-empty string 𝑆 of English lowercase letters, write a program to output PL(𝑆).

Input

Your program is to read from standard input. The input starts with a line containing a positive integer 𝑛 (1 ≤
𝑛 ≤ 100,000), where 𝑛 is the number of letters of a string. The next line contains a string of 𝑛 English
lowercase letters. Note that the string contains no space between the letters.

Output
Your program is to write to standard output. Print exactly one line. The line should contain a positive integer

which is the palindromic length PL(𝑆) of the input string 𝑆.

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
6

abaaca

2

Sample Input 2 Output for the Sample Input 2
5

acaba

3

Sample Input 3 Output for the Sample Input 3
5

abcde

5

Sample Input 4 Output for the Sample Input 4
5

radar

1

ICPC 2024 Asia Regional – Seoul Problem H: Protecting Kingdom

Problem H
Protecting Kingdom

Time Limit: 1.0 Seconds

In the kingdom of CPIC (Committee for Public Infrastructure Conservation), there are  villages numbered
from 1 to  and connected by a network of  − 1 roads forming a tree structure. Each road connects two
villages and has a positive length. Specifically, the -th road connects village  + 1 with village  (1 ≤  ≤ )
and has a length of  . Due to treacherous terrains and past incidents, some points along these roads are
identified as hazardous.

On the -th road, there are  hazardous points located at specific distances ,, ,, …, , from village ,
satisfying 0 < , < , < ⋯ < , < . These distances are integers, indicating positions along the road.

The newly established CPIC Safety Committee aims to enhance traveler safety by deploying a protective
measure. They can select any two points on the roads, including villages, and secure the shortest path between
them. The path can cover all hazardous points located exactly on it, including its endpoints, and its length
must not exceed a given length .

Given the road network, the positions of the hazardous points, and the maximum allowable path length ,
write a program to determine the maximum number of hazardous points that can be covered by optimally
choosing the two points and securing the shortest path between them with length ≤ .

Input
Your program is to read from standard input. The input starts with a line containing two integers,  and 
(2 ≤  ≤ 250,000, 1 ≤  ≤ 10), where  is the number of villages and  is the maximum allowable
length of the secured path. In the following  − 1 lines, the -th line, which provides information about the -
th road, starts with three integers  , , and  (1 ≤  ≤ , 1 ≤  ≤ 10 ,  ≥ 0), where  is the village
connected to village  + 1 by the road,  is the length of the road, and  is the number of hazardous points on
the road. If  > 0, the line is followed by  integers ,, ,, …, , (0 < , < , < ⋯ < , < ),
representing the distances from village  to each hazardous point along the road. The total number of
hazardous points  +  + ⋯ +  does not exceed 10.

Output
Your program is to write to standard output. Print exactly one line. The line should contain the maximum
number of hazardous points that can be covered by a shortest path of length  or less between any two points
on the roads.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
4 2
1 2 1 1
1 610 2 1 100
3 2001 0

2

ICPC 2024 Asia Regional – Seoul Problem H: Protecting Kingdom

Sample Input 2 Output for the Sample Input 2
2 2
1 2 1 1

1

Sample Input 3 Output for the Sample Input 3
8 6
1 2 1 1
1 3 2 1 2
2 1 0
3 4 1 2
2 3 1 1
1 4 1 3
3 4 1 1

4

ICPC 2024 Asia Regional – Seoul Problem I: Square Stamping

Problem I
Square Stamping
Time Limit: 1.0 Seconds

In the plane, there are  points whose -coordinates are either −9999, 0, or 9999. Let  be the set of these 
points. Your task is to enclose all the points in  by a minimum number of congruent axis-parallel squares of
side length 10,000. As a subset of the plane, each such square consists of all points inside and on the
boundary.

Input
Your program is to read from standard input. The input starts with a line consisting of a single integer  (1 ≤ ≤ 300,000), representing the number of input points in . In each of the following  lines, there are two
integers  and , representing the - and -coordinates of a point in , respectively, such that it holds that −10 ≤  ≤ 10 and  ∈ {−9999, 0, 9999}. You may assume that all the  input points are distinct.

Output
Your program is to write to standard output. Print exactly one line. The line should consist of a single integer
that represents the minimum possible number  such that there exist  axis-parallel squares of side length 10,000 whose union encloses all the input points in .

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
5
0 9999
0 0
0 -9999
200 0
10000 9999

2

Sample Input 2 Output for the Sample Input 2
5
10 -9999
0 0
3 9999
9000 -9999
10003 9999

2

Sample Input 3 Output for the Sample Input 3
6
10 -9999
0 0
3 9999
9000 -9999
10003 -9999
10003 9999

3

ICPC 2024 Asia Regional – Seoul Problem J: Street Development

Problem J
Street Development

Time Limit: 1.0 Seconds

ICPC street is currently an undeveloped area, with a large-scale development plan scheduled soon. Before
starting the development, information about  important points along the street will be collected using 
remote-controlled robots, with each robot collecting information from one of these important points. Now, the
goal is to combine all the collected information into a single robot to find the most efficient development
approach. To combine the information, the robots can move towards left or right and combine the information
that they have from other robots. Also, each robot is powered by its own battery, and all the robots are
equipped with identical batteries. Specifically, let , , … ,  represent the positions of the important
points where the robots collect information, arranged from left to right. Then the requirements are as follows:

1. The ICPC street is considered as a one-dimensional interval [0, ] with a positive integer  . The
important points , , … ,  are always represented as integers on the interval, including two
endpoints of the interval. That is,  = 0 and  = . Initially, each robot is positioned at one of the
important points, so it has the information of the important point before beginning to move. Note that
there is exactly one robot at each of these points initially, which means  is also the number of robots,
and always at least 2 and at most  + 1.

2. For combining the information from other robots, robots can move freely to the left or right, consuming 1 unit of battery for 1 unit of distance traveled, regardless of direction. All robots are equipped with the

same battery capacity with integer , and move only in integer units of distance.

3. When two or more robots meet at the integer position on the street, they can combine each other's

information. For example, if a robot with information about  and  encounters with a robot with
information about  and , both robots will then have information about the positions , , , and .

4. Robots consume the battery only for movement. Therefore, they do not use the battery when changing

direction or when combining the information from other robots.

5. After all movements, at least one robot must have information about all the positions , , … , .

ICPC 2024 Asia Regional – Seoul Problem J: Street Development

For example, the figure above shows an example with  = 10,  = 4, and Robots 1, 2, 3, and 4 (R1, R2, R3,
R4 in the figure) collect information (and are initially positioned) at  = 0,  = 3,  = 7, and  = 10,
respectively. Then the following sequence of steps can be performed with a battery capacity of  = 3:

1. Robot 1 moves to , and Robots 1 and 2 combine each other’s information.
2. Robot 4 moves to , and Robots 3 and 4 combine each other’s information.
3. Robot 2 moves 2 units to the right, Robot 3 moves 2 units to the left, and they combine each other’s

information at the position 5 on the street.
Then after completing the process, Robots 2 and 3 will have information about all the positions , , ,
and .

Since the battery is much more expensive than the other parts of robot, it is important to determine the
minimum battery capacity required for each robot for efficient data collection. Given , , and the positions
of the important points , , … , , write a program to calculate the minimum battery capacity  required
for at least one robot to have information about all the points.

Input
Your program is to read from standard input. The input starts with a line containing two positive integers, 
and  (1 ≤  ≤ 10, 2 ≤  ≤  + 1), where  is the number of robots and important points on the street and  is the position of the right endpoint of the street. In the following line,  distinct integers between 0 and 
that represent the positions of important points of the street (the initial positions of the robots) are given in
increasing order, where the first integer is 0 and the last one is .

Output
Your program is to write to standard output. Print exactly one line. The line should contain a single integer
that represents the minimum battery capacity  required for at least one robot to have information about all
the important points.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
10 4
0 3 7 10

3

Sample Input 2 Output for the Sample Input 2
100 5
0 97 98 99 100

49

Sample Input 3 Output for the Sample Input 3
1 2
0 1

1

ICPC 2024 Asia Regional – Seoul Problem K: String Rank

Problem K
String Rank

Time Limit: 0.5 Seconds

Let 𝑤 and 𝑢 be strings consisting of the English lowercase alphabet. We say that a string 𝑢 is a subsequence of

a string 𝑤 if there exists a strictly increasing sequence of integers 𝑖1, ⋯ , 𝑖𝑘, where |𝑤| = 𝑛, |𝑢| = 𝑘 and 𝑢[𝑗] =
𝑤[𝑖𝑗] for all 𝑗 = 1, . . . , 𝑘 . Here, 𝑣[𝑖] denotes the 𝑖-th character of the string 𝑣 . Let 𝑤[𝑖:] denote the suffix

𝑤[𝑖] ⋯ 𝑤[𝑛]. If 𝑖 > 𝑛, then 𝑤[𝑖:] is the empty string denoted by 𝜆.

Given a nonempty string 𝑤 and a positive integer 𝑘 , we define the 𝑘 -set of 𝑤 to be the set 𝑄𝑘(𝑤) of

subsequences of 𝑤 whose lengths are 0, 1, ⋯ , 𝑘. This implies that, for any string 𝑤, the empty string 𝜆 belongs

to 𝑄𝑘(𝑤) by definition.

For example, when 𝑤 = 𝑎𝑎𝑏𝑎, we have 𝑄3(𝑎𝑎𝑏𝑎) = {𝜆, 𝑎, 𝑏, 𝑏𝑎, 𝑎𝑏, 𝑎𝑎, 𝑎𝑏𝑎, 𝑎𝑎𝑏, 𝑎𝑎𝑎}.

For a string 𝑤, we define the rank of 𝑤 to be the minimum integer 𝑡 such that the 𝑡-sets for all suffixes of 𝑤 are

all different. In other words, the rank of 𝑤 is min{𝑡 ≥ 1 | 𝑄 𝑡(𝑤[𝑖:]) ≠ 𝑄𝑡(𝑤[𝑗:]), ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

For instance, when 𝑤 = 𝑎𝑎𝑏𝑎, the 2-sets 𝑄2(𝑎𝑏𝑎) and 𝑄2(𝑎𝑎𝑏𝑎) are equal. On the other hand, for 𝑡 = 3, we

have

𝑄 3(𝜆) = {𝜆},

𝑄 3(𝑎) = {𝜆, 𝑎},

𝑄 3(𝑏𝑎) = {𝜆, 𝑎, 𝑏, 𝑏𝑎},

𝑄 3(𝑎𝑏𝑎) = {𝜆, 𝑎, 𝑏, 𝑏𝑎, 𝑎𝑏, 𝑎𝑎, 𝑎𝑏𝑎},

𝑄 3(𝑎𝑎𝑏𝑎) = {𝜆, 𝑎, 𝑏, 𝑏𝑎, 𝑎𝑏, 𝑎𝑎, 𝑎𝑏𝑎, 𝑎𝑎𝑏, 𝑎𝑎𝑎}.

Therefore, the rank of the string 𝑤 = 𝑎𝑎𝑏𝑎 is 3.

Given a string 𝑤, write a program to output its rank.

Input

Your program is to read from standard input. The input consists of a single nonempty string 𝑤, which consists

only of lowercase characters from the English alphabet. The length of the string is at most 3 × 106.

Output
Your program is to write to standard output. Print exactly one line. The line should contain a positive integer to

represent the rank 𝑡 of the input string 𝑤.

The following shows sample input and output for four test cases.

Sample Input 1 Output for the Sample Input 1
aabbb 3

Sample Input 2 Output for the Sample Input 2
abacb 2

ICPC 2024 Asia Regional – Seoul Problem K: String Rank

Sample Input 3 Output for the Sample Input 3
azadzzadaz 4

Sample Input 4 Output for the Sample Input 4
a 1

ICPC 2024 Asia Regional – Seoul Problem L: Triangle

Problem L
Triangle

Time Limit: 1.0 Seconds

There is a triangle whose coordinates of three vertices , , and  are all integers. If you select a point on
each side of the triangle whose coordinates are integers and connect those points, a new triangle is created.
When creating a new triangle, no vertex of the given triangle can be selected as a vertex of the new triangle.

Depending on which points you select and connect, the area of the newly created triangle may be large or
small.

You are to write a program that finds out the largest and smallest areas of the newly created triangle if they
exist.

For example, as shown in the figure below, if the coordinates of the three vertices of the given triangle are (4, 8), (−8,−1), and (7, −7), the yellow triangle shown in Fig. L.1(a) has the largest area among those that
satisfy the condition, and the blue triangle shown in Fig. L.1(b) has the smallest area.

There may not be a point on any side of the given triangle whose coordinates are integers, in which case the
triangle you are looking for does not exist.

It is guaranteed that the three points of the given input are not on a straight line.

Input
Your program is to read from standard input. The input consists of a line containing six integers that are the (, )-coordinates of the three vertices  =  , ,  =  , , and  = ,  of a triangle, which , , , , , and  are given in that order. Each value of the coordinates is an integer between −10 and 10, inclusive.

ICPC 2024 Asia Regional – Seoul Problem L: Triangle

Output
Your program is to write to standard output. Let the area of the newly created triangle with the largest area be max, and the area of the triangle with the smallest area be min. If such triangles can be found, print 2max and 2min in that order, where both 2max and 2min are positive integers. If such triangles cannot be found, print
-1.

The following shows sample input and output for three test cases.

Sample Input 1 Output for the Sample Input 1
4 8 -8 -1 7 -7 69 46

Sample Input 2 Output for the Sample Input 2
-8 1 7 11 7 -5 121 23

Sample Input 3 Output for the Sample Input 3
0 0 1 10 10 0 -1

	ICPCSeoul2024_problem_cover
	ICPCSeoul2024_problem_list
	Regional-A-Bottles-Final
	Regional-B-CardsFlipping-final
	Regional-C-ColorfulQuadrants-final
	Regional-D-LadderUpdate-final
	Regional-E-Mausoleum-final
	Regional-F-PairSorting-final
	Regional-G-PalindromicLength-final
	Regional-H-ProtectingKingdom-final
	Regional-I-SquareStamping-final
	Regional-J-Street Development-final
	Regional-K-StringRank-final
	Regional-L-Triangle-final

